pydsm.NTFdesign.filter_based.synthesize_ntf_from_filter¶
-
pydsm.NTFdesign.filter_based.
synthesize_ntf_from_filter
(order, H, H_type='zpk', H_inf=1.5, normalize='auto', **options)¶ Synthesize a FIR NTF based on the ΔΣM output filter.
The ΔΣ modulator NTF is designed after a specification of the filter in charge of removing the quantization noise
Deprecated since version 0.11.0: Use
NTFdesign.ntf_fir_weighting()
. Note that the interface is slightly different.- Parameters
- orderint
Delta sigma modulator order
- Ftuple or callable or array_like
filter specification, the format depends on parameter F_type. a zpk or ba tuple if F_type is ‘zpk’ or ‘ba’, respectively. a function of f, for f in [0,1/2] if F_type is ‘mag’ an array containing an impulse response if F_type is ‘imp’
- F_typestr
string indicating the type of filter specification. Can be ‘zpk’, ‘ba’, ‘mag’ or ‘imp’.
- H_infreal, optional
Max peak NTF gain, defaults to 1.5, used to enforce the Lee criterion
- normalizestring or real, optional
Normalization to apply to the quadratic form used in the NTF selection. Defaults to ‘auto’ which means setting the top left entry in the matrix Q defining the quadratic form to 1.
- Returns
- ntfndarray
FIR NTF in zpk form
- Other Parameters
- show_progressbool, optional
provide extended output, default is True and can be updated by changing the function
default_options
attribute.- cvxopt_optsdictionary, optional
A dictionary of options for the
cvxopt
optimizer Allowed options include:maxiters
Maximum number of iterations (defaults to 100)
abstol
Absolute accuracy (defaults to 1e-7)
reltol
Relative accuracy (defaults to 1e-6)
feastol
Tolerance for feasibility conditions (defaults to 1e-6)
Do not use other options since they could break cvxopt in unexpected ways. Defaults can be set by changing the function
default_options
attribute.- quad_optsdictionary, optional
Parameters to be passed to the
quad
function used internally as an integrator. Allowed options areepsabs
,epsrel
,limit
,points
. Do not use other options since they could break the integrator in unexpected ways. Defaults can be set by changing the functiondefault_options
attribute.
See also
scipy.integrate.quad
for the meaning of the integrator parameters.
cvxopt
for the optimizer parameters