Synthesis of the NTF of Delta Sigma modulators (pydsm.NTFdesign)¶
This module provides some strategies for the design of the Noise
Transfer Function of ΔΣ modulators. There are both functions that are
specific to PyDSM and entry points to functions in the delsig module
of PyDSM (pydsm.delsig).
Key functions¶
-
pydsm.NTFdesign.ntf_schreier()¶ shorthand for
delsig.ntf_schreier()
-
pydsm.NTFdesign.ntf_chebyshev()¶ shorthand for
delsig.ntf_chebyshev()
-
pydsm.NTFdesign.ntf_clans()¶ shorthand for
delsig.ntf_clans()
-
pydsm.NTFdesign.ntf_fir_weighting()¶ shorthand for
weighting.ntf_fir_weighting()
-
pydsm.NTFdesign.ntf_hybrid_weighting()¶ shorthand for
weighting.ntf_hybrid_weighting()
-
pydsm.NTFdesign.ntf_fir_minmax()¶ shorthand for
minmax.ntf_fir_minmax()
-
pydsm.NTFdesign.ntf_dunn()¶ shorthand for
psychoacoustic.ntf_dunn()
-
pydsm.NTFdesign.ntf_fir_audio_weighting()¶ shorthand for
psychoacoustic.ntf_fir_audio_weighting()
-
pydsm.NTFdesign.mult_weightings()¶ shorthand for
weighting.mult_weightings()
-
pydsm.NTFdesign.quantization_noise_gain()¶ shorthand for
merit_factors.quantization_noise_gain()
-
pydsm.NTFdesign.ntf_fir_minmax() shorthand for
minmax.ntf_fir_minmax()
Submodules¶
pydsm.NTFdesign.delsigNTF synthesis functions equivalent to those in
pydsm.delsig.pydsm.NTFdesign.weightingNTF synthesis techniques that take as their input either a weighting function (indicating the cost of quantization noise power versus frequency) or a specification of the filter in charge of removing the quantization noise.
pydsm.NTFdesign.minmaxNTF synthesis techniques based on a minmax approach.
pydsm.NTFdesign.psychoacousticNTF synthesis techniques for audio modulators that result in a noise shaping that take into account psychoacoustics.
pydsm.NTFdesign.merit_factorsFunctions for determining merit factors about NTFs.
pydsm.NTFdesign.helpersHelper functions
Legacy submodule¶
pydsm.NTFdesign.legacyFunctions that are now superseded but that are worth keeping around for reproducing published results
Deprecated submodules¶
pydsm.NTFdesign.filter_basedAlternate entry points for some functions.